fbpx

Study Shows Value Of Combining Solar Thermal Energy With Biomass Gasification To Produce Natural Gas Substitute

02.09.2015

Even at historically low natural gas prices, bioenergy may not be out of the running—it just may need a little help from the sun. A new study from researchers at the University of Minnesota examining the financial viability of solar-heated biomass gasification technologies that produce a natural gas substitute product concludes that combining these renewable resources can make economic sense.

In traditional biomass gasification, 20 to 30 percent of the biomass feedstock is burned to produce heat for the process. But if the required thermal energy is supplied from a concentrated solar source, all of the biomass can be converted into useful synthesis gas. The study, funded by the Initiative for Renewable Energy and the Environment at the University of Minnesota Institute on the Environment and published in Biomass and Bioenergy this week, developed a financial feasibility metric to determine the breakeven price of natural gas at which the produced syngas could be sold at a profit. The study suggests that solar-heated biomass gasification systems could break even at natural gas prices of $4.04-$10.90 per gigajoule, depending on configuration.

"While the cost of adding solar energy generation to a biomass gasification facility can approach one-third of a plant's total capital costs, other equipment required in traditional plants can be avoided and the amount of syngas produced per ton of biomass—a major variable cost of production—increases significantly," said senior author and former University of Minnesota College of Food, Agricultural and Natural Resource Sciences student Tom Nickerson.

"With average U.S. natural gas prices at $4.80 per gigajoule in 2014, two of the four configurations modeled were economically competitive," said co-author Timothy Smith, director of the NorthStar Initiative for Sustainable Enterprise, IonE resident fellow and CFANS faculty member. Though government incentives could significantly reduce the risks associated with volatile energy markets, demonstrating that the gap isn't insurmountable is an important step toward environmentally preferred energy solutions. "Utilizing solar technologies to get more energy out of each acre of biomass reduces the impacts to the landscapes producing it," Smith said.

Though no commercial plants currently exist, the technologies modeled in this study are being developed at the Solar Energy Laboratory at the University of Minnesota under the direction of Jane Davidson and lead research scientist Brandon Hathaway of the College of Science and Engineering.

"Our novel approach to gasification has demonstrated its benefits at the bench scale, and testing with our 3 kW prototype is ongoing in the University of Minnesota's High Flux Solar Simulator," said Hathaway. "We hope to find industry partners to join us in the next steps as we scale up the process and move towards testing on-sun," Davidson added.

Article cited from: http://goo.gl/F25YHS

News/Events 

  1. We need to get behind Renewable Natural Gas
  2. Difference between a Turbo and Positive Displacement Blower
  3. The Difference between Methane and Natural Gas
  4. First Dairy Biogas Project in Connecticut
  5. Does Renewable Natural Gas Have a Future in Energy?
  6. Biogas Offtake Opportunities For Digesters
  7. Wisconsin Dairy Begins Production of Renewable Natural Gas
  8. Anaerobic Digestion Sector Forming a Clearer Picture
  9. Brightmark to Expand Western New York Dairy Biogas Project
  10. Biogas - The Energy Wonder That's Under Our Noses
  11. Power Generation Achieved by a Self-Assembled Biofuel Cell
  12. Less Carbon Dioxide from Natural Gas
  13. Project Uses Renewable Electricity for RNG Production
  14. Smithfield Hog Farm Provides Natural Gas to Missouri City
  15. From Waste to Gas
  16. Gas Clash Threatens Australian Export
  17. Maximizing Opportunities of Anaerobic Digestion from Wastewater
  18. Catalyst to Speed up Conversion of Biomass to Biofuel
  19. How It Works: Ethanol
  20. Anaerobic Digestion - the Next Big Renewable Energy Source
  21. Anaerobic Additions
  22. Three (3) Tech Solutions for Modern Landfills
  23. The Costs and Benefits of Anaerobic Digesters
  24. Bacteria Farts Power Wastewater Plant in Fort Wayne
  25. Europe’s First Poultry Manure Biogas Plant
  26. Electricity Using Pig Manure
  27. $38-Million Biodigester coming to Grand Rapids
  28. Biochar Could Benefit Anaerobic Digestion of Animal Manure
  29. Getting More out of Anaerobic Digestion
  30. Biogas prevents 20 million tonnes of CO2 emissions per year

 

For additonal reading, please visit us at: News Worthy

Difference between a Turbo and Positive Displacement Blower