Airknives - a Historical Perspective

Histrorically, and this is only going back about thirty years or so, Airknives were typically made out of round tubes.

The process was quite simple. Depending on the facility and the application, 3" diameter and 4" diameter (or sometimes larger) stainless steel or carbon steel tubing was used - all the machine shop did was mill or either oval or round slots. More often than not, even though these holes could have been perfectly circular, in most instances, slots were milled - typically anywhere from 1" to 3" in length. The reason was simple and sound - provide a wider slot for the air to pass thorugh.

As with all things innovative, Roud-Tube Air Knives were followed by Square-Tube Air Knives. General concensus was that the pointed shape would supply more channeled air than the Round-Tube Airknife.

While the Airknife revolution continued to evolve and grow, the industry continued to use Compressed-Air Airknives and Nozzles for their blow-off and drying needs. To many, this was the most logical way to proceed with their blow-off and drying needs as every facility had plant air (also referred to as shop air or compressed air). Buying compressed air nozzles and airknives from industrial catalog houses seemed like the smart and affordable choice.

As time went by, Plant Managers and Operations Managers realized that their plant air was not all that free. In their efforts to lower operating costs and at the same time with the push to conserve resources, it made perfect sense to perform "line" audits and look at more economical solutions.

TMC Fluid Systems can assist you with your "line" audits and offer unbiased cost analysis and pay-back analysis.

Just email us and ask us how.

Ref: The Difference Between a Pipe and Tube


  1. Is Big Gas finally learning to love biogas?
  2. We need to get behind Renewable Natural Gas
  3. Difference between a Turbo and Positive Displacement Blower
  4. The Difference between Methane and Natural Gas
  5. First Dairy Biogas Project in Connecticut
  6. Does Renewable Natural Gas Have a Future in Energy?
  7. Biogas Offtake Opportunities For Digesters
  8. Wisconsin Dairy Begins Production of Renewable Natural Gas
  9. Anaerobic Digestion Sector Forming a Clearer Picture
  10. Brightmark to Expand Western New York Dairy Biogas Project
  11. Biogas - The Energy Wonder That's Under Our Noses
  12. Power Generation Achieved by a Self-Assembled Biofuel Cell
  13. Less Carbon Dioxide from Natural Gas
  14. Project Uses Renewable Electricity for RNG Production
  15. Smithfield Hog Farm Provides Natural Gas to Missouri City
  16. From Waste to Gas
  17. Gas Clash Threatens Australian Export
  18. Maximizing Opportunities of Anaerobic Digestion from Wastewater
  19. Catalyst to Speed up Conversion of Biomass to Biofuel
  20. How It Works: Ethanol
  21. Anaerobic Digestion - the Next Big Renewable Energy Source
  22. Anaerobic Additions
  23. Three (3) Tech Solutions for Modern Landfills
  24. The Costs and Benefits of Anaerobic Digesters
  25. Bacteria Farts Power Wastewater Plant in Fort Wayne
  26. Europe’s First Poultry Manure Biogas Plant
  27. Electricity Using Pig Manure
  28. $38-Million Biodigester coming to Grand Rapids
  29. Biochar Could Benefit Anaerobic Digestion of Animal Manure
  30. Getting More out of Anaerobic Digestion


For additonal reading, please visit us at: News Worthy

Difference between a Turbo and Positive Displacement Blower