fbpx

Improved catalyst can speed up conversion of industrial biomass into biofuel

January 11, 2018

In their quest for greener sources of energy, researchers are focusing their attention on efficient conversion of biomass into biofuel. Scientists at the National Chemical Laboratory (NCL), Pune, have developed a faster, environment-friendly method for conversion of industrial biomass into biodiesel.

An organic compound called furfural is produced from agricultural waste biomass like bagasse, cottonseed hulls, sawdust, oat hulls, rice hulls, wheat husk, and bran. Typically furfural is first chemically changed into furfuryl alcohol. It is processed further to produce alkyl levulinates, such as ethyl levulinate. The process, however, involves multiple steps and takes a relatively long time. The NCL team has developed a new version of zeolite catalyst – HPW/Meso-HZ-5 – which can speed up the process of conversion.

The catalyst exhibits good performance with 100% furfural alcohol conversion along with 97% ethyl levulinate biodiesel yield and 3% ethoxy methyl furan yield. Ethoxy methyl furan is used as a food additive. The catalyst showed superior activity when compared to the parent H-ZSM-5 and Meso-HZ-5 used separately.

“Due to a higher number of active sites and larger pore size, the travel distance is reduced, thereby improving the accessibility of active sites. The low molar ratio of reactants would do away with the separation cost associated with unreacted ethanol, operational cost and reactor size, making the process economically viable and industrially safe,” researchers said.

India is among leading producers of rice, pulses, wheat, and the world’s second largest producer of sugarcane. A large amount of agricultural waste is produced. Converting this non-food waste into furfural and upgrading it further to biodiesel could give additional income to farmers and also generate employment.

Globally, researchers are seeking to explore biomass as a sustainable alternative feedstock. Ethyl levulinate is one of the top ten biomass-derived ‘building blocks’ recognized for use in biorefineries. It is a renewable oxygenate additive and can be added to diesel. In this context, the new process would comprise green chemistry and engineering principles such as mild reaction conditions, solid catalyst, reduced byproduct formation, the usage of green solvent (ethanol), sustainable and renewable synthetic routes, and lowering cost involved in separation and purification.

The research team included Kakasaheb Y. Nandiwale, Ashwini M. Pande and Vijay V. Bokade. The study results have been published in journal Environmental Progress & Sustainable Energy.

Article cited from: https://goo.gl/mfiwBC

 

 

News/Events 

  1. Difference between a Turbo and Positive Displacement Blower
  2. The Difference between Methane and Natural Gas
  3. First Dairy Biogas Project in Connecticut
  4. Does Renewable Natural Gas Have a Future in Energy?
  5. Biogas Offtake Opportunities For Digesters
  6. Wisconsin Dairy Begins Production of Renewable Natural Gas
  7. Anaerobic Digestion Sector Forming a Clearer Picture
  8. Brightmark to Expand Western New York Dairy Biogas Project
  9. Biogas - The Energy Wonder That's Under Our Noses
  10. Power Generation Achieved by a Self-Assembled Biofuel Cell
  11. Less Carbon Dioxide from Natural Gas
  12. Project Uses Renewable Electricity for RNG Production
  13. Smithfield Hog Farm Provides Natural Gas to Missouri City
  14. From Waste to Gas
  15. Gas Clash Threatens Australian Export
  16. Maximizing Opportunities of Anaerobic Digestion from Wastewater
  17. Catalyst to Speed up Conversion of Biomass to Biofuel
  18. How It Works: Ethanol
  19. Anaerobic Digestion - the Next Big Renewable Energy Source
  20. Anaerobic Additions
  21. Three (3) Tech Solutions for Modern Landfills
  22. The Costs and Benefits of Anaerobic Digesters
  23. Bacteria Farts Power Wastewater Plant in Fort Wayne
  24. Europe’s First Poultry Manure Biogas Plant
  25. Electricity Using Pig Manure
  26. $38-Million Biodigester coming to Grand Rapids
  27. Biochar Could Benefit Anaerobic Digestion of Animal Manure
  28. Getting More out of Anaerobic Digestion
  29. Biogas prevents 20 million tonnes of CO2 emissions per year
  30. Converting to green gas grid ‘could be vital’

 

For additonal reading, please visit us at: News Worthy

Difference between a Turbo and Positive Displacement Blower